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Abstract

When we know the subjective probabilities (degrees of belief) py and p, of two
statemients S, and S5, and we have no information about the relationship between these
statenents, then the probability of $;&S; can take any value from the interval
[max(py + p> — 1,0), min(py, py)]. 1f we must select a single number from this interval,
the natural idea 1s to take its midpoint. Thc corrcsponding “and” opcration
”m &p2(|5—r(l/2)(111ux(/), +p2 — 1,0) - min(py, p2)) is not associative. However, since the
largest possible non-associativity degree [(a&b)&c —a&e(h&c)| is equal to 119, this
non-assoctativity is negligible if the realistic “granular” degree of belief have granules of
width > 1/9. This may explain why humans arc most comfortable with <9 items to
choose from (the famous “7 plus or minus 27 law). We also show that the use of interval
computations can simplify the (rather complicated) proofs. © 2002 Elsevier Scicnec Ine.
All rights reserved,
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1. In expert systems, we need estimates for the degree of certainty of S; &8, and
S VS,

In many areas (medicine, geophysies, militury decision-making, ete.) top
quality experts make good decisions but they cannot handle all situations. It is
therefore desirable to incorporate their knowledge into a deeision-making
computer systen.

Experts deseribe their knowledge by statements Sy, ..., S, (e.g., by if-then
rules). Experts are often not 100% sure about these statements S;; this uneer-
tainty is deseribed by the subjective probabilities p; (degrees of belief, cte.) whieh
experts assign to their statements, The eonelusion C of an expert system nor-
mally depends on several statements S;. For example, if we ean deduee C either
from S; and S;, or from S, then the validity of Cis equivalent to the validity of
a Boolean combination ($; & S3) V S,. So, to estimate the reliability p(C) of the
eonelusion, we must estimate the probability of Boolean combinations. In this
paper, we consider the simplest possible Boolean eombinations §;&.S; and
AYRVAAYY

In general, the probability p(S) & S,) of a Boolean eombination ean take
different values depending on whether S, and S, are independent or correlated.
So, to get the preeise estimates of probabilities of all possible eonelusions, we
must not only know the probabilities p(S;) of individual statements but also the
probabilities of all possible Boolean eombinations. To get all sneh probabili-
ties, it is suffieient to deseribe 2" probabilitics of the eombinations
E}& - &E™, where ¢ € {+,-}, £" means £, and E- means -/, The only
condition on these probabilities is that their sum should add up to 1, so we
need to describe 2" — 1 different values. A typical knowledge base may eontain
hundreds of statements; in this case, the value 2" — 1 is astronomieally large.
We ecannot ask experts about all 27 sueh combinations, so in many eases, we
must estimate p(S, & S,) or p(S; V.S,) based only on the values p; = p(S)) and
Do = ]J(gg)

2. Interval estimates are possible, but sometimes, numerical estimates are necded

1t is known that for given p; = p(8§;) and p» = p(S$):

o possible values of p(S;&S;) form an interval p=[p ,p']. where p =
max(p; 4 p» — 1,0) and p* = min(p,, p»); and

e possible values of p(S; Vv $) form an interval p=[p ,p'], where p~ =
max(py, py) and pt = min(p; + p2. 1)

(sce. e.r., a survey [23] and referenees therein).

So, in prineiple, we ean use such interval estimates and get an interval p(C)
of possible values of p(C). Sometimes. this idea leads to meaningful estimates,
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but olten, it leads to a useless p(C) = [0, 1] {23,24]. Tn such situations, it is
reasonable, instead of using the entire interval p, to seleet a point within this
interval as a rcasonable estimate lor p(8,&S,) (or, correspondingly, lor
p(SIVS,)).

3. Natural idea: selecting a midpoint as the desired estimate

Since the only information we have, say, about the unknown probability
p(S1&S,) is that it belongs to the interval [p~,p*], it is natural to select a
midpoint of this interval as the desired estimate. In other words, it we know the
probabilities p; and p, of the statements S, and S,, then, as cstimates for
p(S1&S,) and p(S; V S), we can take the values py &p, and py V py, where

def

) .
pr&py == max(py +pr— 1,0) + = min(py, ), (n

et

PV pE

O — =

| :
max(py, p2) + 5 mun(py + pa, 1). (2)

This midpoint selection is not only natural from a common sense viewpoint; it
also has a deeper justification. Namely, in accordance of our above discussion,
for n =2 statements S; and S>, to describe the probabilities of all possible
Boolean combinations, we need to describe 2° = 4 probabilities x; = p(S; &35,),
X2 = p(S1&~8y), x5 = p(=S1&S)), and xy = p(~81 & ~8;); these probabilities
should add up to [: x; +x; 4+ x3 + x4 = 1. Thus, cach probability distribution
can be represented as a point (xi,...,xs) in a 3-D simplex ¥ =
{(xr,x, 33, x0) |3 =2 0&x) + -+ + x4 = 1}. We know the values of py = p(S)) =
xp4+xy and pr = p(S) =x +x3, and we are interested in the values of
p(S1&S)) =x; and p(S;V 8) = x; 4+ x; +x3. 1t is natural to assume that «
priori, all probability distributions (i.c., all points in a simplex &) are “equally
possible”, i.c., that there is a uniform distribution (“second-order probability™)
on this sct ol probability distributions. Then, as a natural estimate lor the
probability p(S)&S;) of §,&S,, we can take the conditional mathematical
expectation ol this probability under the condition that the values p(Si) = p,
and p($) = py:

E([)(Sl XCSZ) .[)(Sl) = Di &j)(Sg) = /)2) = P(,\'l

(This idea was proposed and described in [1,7-10]; sce also [2].)

From the geometric viewpoint, the two conditions x| +x; = p; and
v; +x3 =y select a straight line segment within the simplex ., a scg-
ment which can be parameterized by x; € [p,p*] = [max(p, +p2 — 1,0),
min{p,, )]s then, x; = py —xq, x3 = pp —xy, and xg = | — (x; +x; +x3). Since
we start with a uniform distribution on ¢, the conditional probability distri-
bution on this segment is uniform, ie¢., x; is uniformly distributed on the

X +x =p&xy +x3 = ).
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interval [p~,p*]. Thus, the conditional mathematical expectation of x; with
respect to this distribution is equal to (p~ + p')/2, 1.e., to the midpoint of this
interval. Similarly, for an “or” operation, we can conelude that

E(p(S1 vV $:)|p(S1) = p1 &p(S2) = p2)

1 |
=5 max(py, pz) 45 min(py + pa, 1).

4. Problem: midpoint operations are not associative

Any “and” operation p; & p; enables us to prodnce an estimate for P(S; & S,)
provided that we know estimates p; for p(S;) and p, for p(S,). If we are in-
terested in estimating the degree of belief in a conjunction of three statements
51 &S, &S5, then we ean use the same operation (wice:

o furst, we apply the “and” operation to p; and p, and get an estimate p, &p,
for the probability of S| & S»;

o then, we apply the “and” operation to this estimate p; & p, and ps, and get an
estimate (p| & py) & p; for the probability of (S, &S,) & S5.

Alternatively, we can start by combining S, and S;, and pet an estimate
& (p&py) for the same probability p(S) & S, &Sy). Intuitively, we would
expecet these two estimates to coineide: (p & p))&py =p & (&), te., in
algebraie terms, we expect the operation & to be associative. Unfortunately,
midpoint operations are not associative [2]: e.g., (0.4&0.6)&0.8 =0.280.8
= 0.1, while 0.4&(0.6&0.8) = 0.480.5 = 0.2 +# 0.1.

By itself, a small non-associativity may not be so bad:

e assoeiativity eomes from the requirenient that our reasoning be rational,
while

e itis well known that our aetual handling of uneertainty is not exaetly follow-
ing rationality requirements; see, ¢.g., [30].

So, it is desirable to find out how non-associative can these operations be.
5. How non-associative are natural (midpoint) operations? Main results and their
psychological interpretation

We know that the midpoint operations are non-associative, i.e., (hat
sometimes, (a&b)&c # a& (h&c¢). We want 1o know how big can the differ-
enee (a&b)&c—a&(h&c) ean be.

Theorem 1. max, ;. |(a&b)&c—a&(b&e) =1/9.
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Theorem 2. max, . |[(aVh)Ve—-av(bve)=1/9.

(For readers’ convenience, all the prools are placed in the last section.)

Human experts do not use all the numbers from the interval [0, 1] to describe
their possible degrees of belief; they use a few words like “very probable”,
“mildly probable”, etc: see, e.g.. [5]. Each of the words is a “granule” covering
the entire sub-interval of values. Since the largest possible non-associativity
degree |(e&b) & — ale(b&e)| is equal to 1/9, this non-associativity is ncgli-
gible if the corresponding realistic “granular™ degree of belief have granules of
width > 1/9. One cuan fit no more than nine granules of such width in the
interval [0, 1]. This may explain why humans are most comfortable with <9
items to choose from — the famous “7 plus or minus 2” law; sce, ¢.g., [20,21).

This general psychological law has also been confirmed n our specific area
of formalizing expert knowledge: namely, in [5,6], it was shown that this law
explains why in intelligent control, experts normally use <9 different degrees
(such as “small”, “medium”, etc.) to describe the value of each characteristic.

6. Pessimism—optimism as an alternative to midpoint

For cach interval [p,p'], the lower endpoint p is the most pessimistic
estimate, while the upper bound p' is the most optimistic onc. Sclecting as
midpoint means selecting an average of the pessimistic and an optimistic es-
timates. Alternatively, we can use Hurwicz pessimism-optimism criterion
(originally proposed in [12]): namely, we choose a real number o € {0, 1], and
select a value p=o-p~ + (1 —a) - p'. This sclection can be justificd by the
requirement that the corresponding mapping from intervals to points should
not depend neither on the units in which we measure u (i.e., be scale-invariant),
nor on the choice of the starting point (i.c., be shift-invariant).

Definition. By a choiec function, we mean a function s that maps every interval
[, ut] into a point from that interval, and that has the following propertics
for cvery interval and for every ¢ and 4 > 0:

o s( +ceut +¢)) =s((w,ut]) + ¢ (shift-invariance);
o s([A-u A -u"])) =4 s([u.a’]) (unit-invariance).

Proposition [22). Every cloice fuaction has the form
sl ut)) =0+ (1 —a)-ut.

Hurwicz's pessimism-optimism criterion has been successfully used in arcas
ranging {rom submarine detection [3,4,25-27] to petroleum engincering [29];
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sec also [13-15,19,28]. (In [32,33], this approach is applied to seeond-order
probabilities.)
With this approach, we get the following formulas whieh generalize (1) and

)
m&p . max(p; +p> — 1,0) + (1 — o) - min(py, p»), (3)

m Vl’zdga -max(pr, pa) + (1= a) -min(py + py, 1). (4)
These operations (3) and (4) have the following easy-to-prove properties:

e they arc commutative: a&h =b&aand a Vb = bV a;

o they are monotonic m the sense that if a <a’ and b< ¥, then a& b <ad' &b
andavb<ad v,

 for elassieal truth values a, b € {0, 1}, these operations eoineide with the eor-
responding operations of classieal two-valued (Boolean) logic;

¢ the “and”-operation (3) is a eonvex combination of two r-norms for both of

whieh a # b <, hence ad&eh < a for all @ and b; similarly, a <a Vv b for all ¢
and b.

For these new operations, the largest possible degrees of non-assoeiativity are
cqual to the following values:

Theorem 3.

o - ] —
max Ha&b)&c—a&(b&e)| = 3 _: a(~ U—;)X)
Theorem 4.
g o {1 —0a)
I’}:l;'\lx |((1 \V [)) Ve—aV (1) \v C‘)I = ‘:z——*‘_—c‘x‘F ’;}'

7. These operations are semi-associative

It turns out that in proving Theorems 14, it is nseful to take mto consid-
eration that although the new operations & and V are not assoeiative, i.e., the
values (a&b)&c and a& (h&¢) are not always equal, these operations are
semi-associative in the sense that instead of equality, we have one-sided in-
equality. To be more preeise, the following result is true:

Definition 1. We say that a commutative operation * 1s semi-associative if
a<h<cimplies that ax (bxc) Z b+ (axc) =c* (ax D).

Theorem 5. For every « € (0,1), botl operations (3) and (&) are semi-associative.
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8. Proofs
8. 1. General comment

One can casily see that the operation (2) is dual to the operation (1) in the
sense that avb =1~ (1 —a)& (1 —»b). Similarly, for every o€ (0,1), the
operation (4) corresponding to this « is dual to the operation (3) corresponding
to o =1 - 2, and vice versa. Because ol this duality, we can casily deduce
Theorem 2 Irom Theorem 1, Theorem 4 from Theorem 3, and the “or™ part of
Theorem 5 from its “and” part. Thus, it is suflicient to prove Theorem 1,
Theorem 3. and the “and” part ol Theorem 5.

Or these three results, Theorem | is a particular case of Theorem 3 which
corresponds to « = 0.5; thus, it is suflicient to prove Theorem 3 and the “and”™
part of Theorem 5. Since, as we have mentioned, Theorem 5 is used in Section
8.3, we will start by proving Theorem 5.

To make it casicr to follow these proofs, the reader is welcome to use the lact
that the traditional fuzzy logic operation min(a, b) corresponds to « = 0 and
| —a =1; to make this following even casicr, we introduce a new variable
f=1—athen, a=1-fi.

8.2. Proof of Theorem 5

8.2.1. General idea of the proof

Let us assume that ¢, b, and ¢ are three real numbers lor which ¢ <b <c¢.
For these real numbers, we want to prove the incqualitics between the three
terms a & (b& ). b& (a&c), and c& (a&h). Each of these terms describes the
order in which we apply an “and’ operation & to these three numbers; e.g.,
a&(b&c) means that we first apply this operation to b and ¢, and then
combine the result with «. To simplify notations, we will denote cach ol these
three terms by the number which is the last to be combined; to be more
precise, we will use the notations l(,d_ira&(b&c), t,,dérl)&(a&c). and <
c&(a&eh).

The formulas for a&h, a&e. and h& ¢ depend on the relation between,
correspondingly. ¢ + b, a + ¢, b + ¢, and the number 1. Since we assumed that
a<h<c, we have a+ b <a+c<b+ c. Thus, there arc exactly four possible
locations of number 1 in relation to these three sums:

1. the number 1 can be larger than the largest ol these three sums; in this
casc, all three sums are <1, ic.,

at+b<a+e<b+tesl;
11. the number 1 can be between o 4 ¢ and b + ¢; in this case,

at+b<a+c<l <b+gc
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IT1. the number ! can be between a + b and a 4 ¢; in this ease,
a+b<1l1<a+c<hb+g

I'V. the number I ean be smaller than the smallest of these three sums; in this
ease, all three sums are > 1, i.e.,

l<a+b<g<at+c<h+e.

Let us consider these four cases one by one.

8.2.2. Case 1

In this case, a+b<a+c<bhb+c<l, 80 a+b<!l and b+ c <. Henee,
b&c=p-b,akc=p-a,and a&h = f-a. Let us find the values of all three
terms ¢, ¢4, and ¢

t.: Sinee a & b < a (by the properties of the new operation) and a < ¢ (by our
assumption), we eonelude that a&h<e. Also, (a&kb)y+c=f-a+c<a+
&< 15,50

(a&b)&c=p-(a&b)=p-(f-a)=f-a.
: Similarly (e&c)<a<h, and {(a&c)+b=f-a+b<a+hb<!1so
(a&c)&b=f-(akc)=p-(f-a) = a.
t: Finally, (h&c)+a=f-b+a<a+b<1, 50
(b&c)&a=p-min(f-b,a) = min(f*- b, f-a).
Now we are ready to prove flxe desired inequalities:

t- < tp: We have shown even that 4, = (a&c) &b = (akeb)&c = 1.

i 2 12 a .
th<t,: Since b= a, we have 87-b = 1" - a; clearly, since f < 1, we have
f> [, hence f-a = f*-a. Hene, min(_ﬁ2 bp-a)y=pa

Thus, for Case I, the inequalities arc proven.

8.2.3. Case Il

Inthiscase,a+b<a+c<l,s0a&c=f-aanda&h = f a. On the other
hand, since b+c =1 and b<c, we have b&e=p-b+ (1 =pB)-(b+c—1)
= f-b. Let us find the values of the three terms ¢, #,, and 1.

t.: Here, (a&b)<a<cand (a&kb)+c=flra+c<a+c<l, s0
(a&b)&c=f-(akb)=f-a.
t,: Similarly, (a&c)<a<band (a&c)+b=fi-a+b<a+b< 1,50

(a&c)&b=f-(akec) = -a
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t,: Finally, since b& ¢ = f#- b, and & is a monotonic operation, we can con-
clude that (h&c)&a = (ff-b)&u. We have f-b+a<a+b< |, s0

(B D)&a=f min(f-b,a) =min(f*-b,f-a)
and
(h&e)&ea = (f-b)&a =min(ff* - b,f - a).
Now we are ready to prove the desired inequalities:

t. <ty We have shown that (a&c) &b = (a&eb) &e.
1, <t,. In proving Case |, we have alrcady shown that min(/J2 b, f-a) =
/32 ~a, hence t, > min(/}2 b, fia) = /32 ca =1, and 1, <¢,.

Thus, for Case 11, the incqualitics are proven as well.

8.2.4. Case 11l
Here, a +b< 1,50 a&b=fi-a. Sincca+c=1and b+ c =1, we have

a&c=f-a+ (1= -(a+c-1)
=iff a4l =B o (L = )ee= {1 =
—at(l=P)c—(1-p)

and similarly, b&c=5b+ (1 —ff)-¢ — (1 = ). Let us find the values ol the
three terms ¢,, 4, and ¢.:

t.: Here, (a&b)&c=(ff-a)&c. Since a<c¢, we have ff-a<c. Hence,
the expression for this term depends on whether ff-a+c¢<1 or f-a+
e >

@B ate<], then (a&b)&c=(f-a)&c=p-a

OYIf f-a+c>1, then (a&b)&e=(f-a)&c=f-a+(1-f)-c—

(Lr=pm.

ty: We have a&e<a<band (a&c) + b<a+ b< 1, hence
(ake)&b=pf (a&kc)=f-a+p-(1=f)-c—f-(1-5).

t,: Finally, since b& ¢ < b, we have (b&c) + a< b+ a <1, Therefore, the ex-
pression for this third term depends on whether b&c=5b+ (1 — f)
c—(1-f<aorb+(1 = -c—(1=-p)>a

@Ifb+(1=p)-c— (1 —p)<a, then

(b&c)ka=p-(b&e)=-b+p- 1 =p)-c=p-(1-7).
LYUb+(L=p)-c—(1-p)>a, then (b&c)da=f-a.

Let us now prove the inequalities.
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1. <ty First, we will prove that (a&b) &e < (a& c) &b. We will prove this in-
equality for both possible expressions lor (a&b) & ¢
(@ Il fra+ce<|1, then (a&kb)&ec= f>-a. On the other hand,
(al&c)&eb = (a&e) and since

ake=f-a+(1-=p)-(a+c—-1)=fa,

and f = [, we conclude that

(a&c)&eb=f-(a&c)=P-a>p-a=(akb)ke.

(b p-a+c>1, then

(a&b)&c= (B -a)&ec
=f-at(=fc=(-p
=f-a-(10-=F (1 -c).

On the other hand,

(ac)&eb=f-a+p-(1=f)-c=f- (1=}
—Ba=p-(1=P)-(1-c).

Since 0 < ff< 1, wehave - (1 —f)-c< (1 —f)-c. Thus,

fra=(i=p)-(=)<B-a=F-(1=f) (1 —0),

e, (akb)&e< (ake)&b.

So, this inequality is proven for both cases.

1, <t,: Let us now prove the second incquality (a&e)&b<(b&e)&a. To
prove this inequality, we will also consider two possible expressions for

(b&c)&a:
@ Ub&ke=b+ (1 =p)-c~ (I = f)<a, then

(b&c)&a=f-(b&c)=B-b+f (1 —-f)-c—p-(1-f).

Since b = a, we have

(bcya=F-b+f-(1-P)-c—f-(1-F)
>B-atp-(l=p)-c—p-(1=p)
=(a&c)&b.

MY I b&ke=b+(1=p)-c—(1 —f) >a, then (h&c)&a = f-a, and

(akc)&b=f-a+p- (0 =F-c=p-(1=p)
=f-a-p-1-=-p5-(1-0).

Sinee ¢ < 1, we have

(b&Y&ea=p-azp-a-f-(1=p) (1 —c)=(ake)&b.

So, this inequality 1s also proven for both possible cases.



R Trejo et al | Internat. J. Approx. Reason. 29 (2002) 235-266 245

8.2.5. Cuse 1V
In this case, all three sums a + b, a + ¢, and b + ¢ are greater than [, so

akb=a+ (1 - -b—(1-pB), akc=a+({=f)-c—=(1 =), and b&c =

b+ (1-=p)-¢c—(1—=p). Belore we start computing the values of the terms ¢,

1, and 1., we want to make some preliminary analysis:

e The valuc ol't, = (h&¢) & a depends on whether (h& ¢) + a < 1, i.c., whether
b+ (1 =f)-c— (1 =f)+a<1. If we move terms which do not contain «,
b, or ¢ to the right-hand side. and rearrange terms which do contain «, b,
or ¢, in alphabetic order, we get an equivalent inequality a + b+ (1 — f§)
xc<2—p.

e Similarly, the value of ¢, = (¢&¢)& b depends on whether (a&c) + b <1,
i.e., whether a + (1 —f)) ¢ — (1L — i) + b< 1, which is also cquivalent to
the same inequality a + b+ (1 = f)) - ¢<2 - f3.

e Finally, the value of 1. = (¢ & b) & ¢ depends on whether (a&b) + < 1, ic.,
whether a + (1 — f) - b — (1 — §) + ¢ < 1, which is equivalent to the incqual-
tya+ (1 =f)-b+ec<2-p.}

So, to find the expressions for 1, 1,, and 1., we must know where 2 — ff stands in

comparison with a+b+ (1 —f)-¢ and a+ (1 = ff) -b+c. Since b<c, we

have ff-b< f-c, hence
a+b+(l=p)-c=(u+b+c)=—fi-c
SletBic) — f-b
=a+(1-f) b+c.
Duc to this incquality, we have exactly three possibilities:

A. the number 2 — ff can be larger than the largest of the above two expres-
sions: tn this case, both cxpressions are <2 — f, i.e.,

a+b+ (1 —f)-c<a+ (1 =f)-b+e<2—f
B. the number 2 — f§ is in between the above two expressions; in this case,
a+b+(1=f)-c<2-f<a+(1-f -b+c¢

C. the number 2 — f is smaller than the smallest of the above two expres-
sions; in this case, both expressions arc =2 — fi, L.e.,

2=p<a+b+(A - c<at (1= -b+c.

We will prove the inequalities by analyzing these three cases one by one.

8.2.0. Cuse 1V, Subcase A

Inthiscase,a +b+ (1 =) c<a+ (1 - f)-b+¢<2~ f, hence, (a&b) +
e, (a&e)+b< 1, and (&) +a< 1.
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t.: Since a & b < a (by the properties of the ncw operation). and ¢ < ¢ (by our
assumption), we conclude that ¢ &b < c. Since (a& b) + ¢ < 1, we conclude
that

(a&b)&c=f-(a&b)=P-a+p- 1= -b=p-(1 =p).
ty: Since a&e<a<h, and (a&c) +b< 1, we have
(a&c)&b=f-(a&kc)=f-a+p- (I =B -c=f-(1=p).
1,2 Since (b&c) +a< 1, we have
(b&c)&a=f-min(b&ec,a) = f-min(h+ (1 = f)-¢c— (1 - f),a).
Lct us now prove the desired inequalities:
t, <1 Since b <c, we have
(akeb)&c=f-a+p-(1=B)-b—f-(1-f)
<pratp(=fre=f(1-p)
= (a&e)&b.
t, < 1,0 By the propertics of the operation &, we have a& ¢ < a; also, from
a < b and monotonicity of &, we conclude that ¢ & c < h& ¢. Since a& ¢ does
not cxcced the two numbers a and h& ¢, 1t thereforc cannot exceed the small-

est of thesc two numbers, ie., a& b < min(b, & ¢),a. Multiplying both sides
of this inequality by f3, we conclude that

fi-(a&e) < f-min(b&e,a),

hence

(a&c)&b=f-(a&ec)<f-min(b&c.a) = (b&c)&a.

8.2.7. Case 1V, Subcase B

Inthiscasc,a+b+ (1 =) -c<2=f<a+ (1 =) -b+c, hence, (a& b)+
c>1, (a&e)+b< 1, and (b&e) +a< 1.

1. Since a&b<a<cand (a&b) +c > 1, we conclude that
(a&b)&e = (a&D)y+ (1 =f)-c—(1 = /)
=a+{1=-B)-b+(1 =S -c=2-(1=P).
1. Since a&c<a<h, and (a&c)+ b < 1, wehave
(@a&c)&b=f-(akcy=f-a+fi-(L =B -c=p-(1 =)
t,: Since (h&c¢) +a <, wec have
(b&cY&a=f -min(h&ec,a) = -min(b+ (1 = f)-c— (1 =), a).
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Let us now prove the desired inequalities:
t. <t Indeed,
te—tp={a+{1=pf-b+-f)-c
2l gy~ (B a4l —B)-a~ P~ )
= 1l =il -~z g={l— B bl =B e— (20} (L —f)
= =f)-(a+b+1-p)-c—(2-0)).

We know that < I, so | —f > 0. Also, in Case IV.B, we have a + b+
(1=f)-c—(2-0)<0; henee, 1, — 6, <0, Le., 1, < 1.
f, < t,: This inequality is proven exactly as in Case 1V.A.

8.2.8. Case IV, Subcase C
Inthiscase,2 —f<a+b+ (! —p)-c<a+ (1 —f) - b+c, hence, («&d)+
e> 1, (a&e)+b> 1, and (b&e) +a> 1.

t: Since a&hb<a<ceand (a&h) + ¢ > 1, we eonclude that
(a&b)&e = (a&b)+ (1 = f)-c— (1 = f)
=a+(l=f)-b+(1 =) -c=2-(1 =f).
ty: Since a&ce<a<hand (a&c)+ b > 1, we conclude that
(akce)&eb = (ake)+(1-f)-b—-(1 -8)
—a+(1—=p)-b+(1=f)-c=2-(1=p).

Lo Since (b&c¢) 4 a > 1, the expression for ¢, depends on whether h& ¢ <a,
te, on whether b+ (1 —f5) - ¢ — (1 = )< a:
() U b&e=b+(1—-p)-c— (1 —p)<aq, then

(b&c)&a= (b&e)+ (1 - f)-a—(1-p)
=(0=f)-atb+(t=f-c=2-(1-p)
L) I b&e=b+(1=p)-c— (1 —f) > a, then
(b&c)a=a+ (1 — ) (b&c) — (1 = f)
=gt [l =B -d+l=p o={1=0 (=

Let us now prove the desired inequalitics;

t. <t Indeed, in this case, £, = /..
fy < t,0 We will prove that this mequality holds in both cases (a) and (b):
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(a) In this ease,
ta—th=((1=Mc-a+b+(1 =) ¢
~2:(1=-B))—(a+(1—B)-b+(1—-p)-c=2-(1-5))
=—fira+p-b=p-(b—a)=0,
SOt 21
(b) In this ease,
i ~ty =@ 41— B) B (L = BY =c— (I =)
(=P =@+ {1-p)-b+(1=5-c—2-(1-§)
= wnffielemiff) - &l (L = iBe= e (= 8 (1L — ) 20
so also 1, > 1.

The theorem is proven.

8.3. Proof of Theorem 3

8.3.1. General idea of the proof

We want to prove that the maximum (over all real numbers «, b, and ¢) of
the absolute value [(e&b)&c—a& (b& )| of the differenee (adeh)d&c—
a& (h& ¢) between different “and”-eombinations of these numbers, is equal to

s 2 (1= p-(1-p)
24a-(1=a) 24p-(1=0)

From Theorem 5, we know that for three arbitrary numbers, the possible
eombinations always appear in a certain order: namely, if we order the original
numbers in the inereasing order @ < b < ¢, then we have

o =a&(b&c) 21, =b&(a&c) 2 1. = c&(a&b).
Thus, the largest possible differenee between the possible “and”-combinations
is equal to

t,—t.=a&(b&c) — c&(akd).

Thus, to prove Theorem 3, it 1s suffieient to prove that the maximum of the
differenee t. — 1, over all possible values a < b < ¢ 1s equal to M.

The faet that the differenee 1, — 1, ean take the value M ean be easily shown
by the following example:

def 1 def ) L -1 §)

= L) I T e

_2-F
45 U=

cn—l fay =
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In particular, for o = 0.5 and ff =1 — x = 0.5, we have M = 1/9 and
4 5 i
ay = 6'. b() = 61 Gov= 6

Let us show that for these values, 1, - . = M. Indeed, here, ay < 0.5 hence
by =1~ay>0.5 30 ay < by. Also, since f < |, wehavecy=1—f-ay> by =
| — ag, s0 ay < by < ¢y

Since ap + by = 1, and ag < by < ¢p. we have ay +¢o > 1 and by + ¢y > 1.
Thus, ap &by = - ap and

l)()&',('() :l)(]+ (1 —'/;)'C()—(l —II;)— l—a()+(l —ﬁ)(l —/1~a(,)—(l —/;)

=1 —ag+ (1 =)= - (1= ) -ao— (1~ §)
Sl —ap—f- (1= ) -ap- (1= )

L e )
B EY N
|

-:i—gm—_T)_—d().

Now we can compute the values ¢, and ¢. and the difference between them:

=

.+ Here, ap&cy <ag < by Since (ag&ehy) = - ap, we have (ap&by) +¢p =
/)’ sy g = 1, 50

te = (ao&ebo) &co = - (ap&ebo) = - ap.
. Here, (bo&co) = ap, 80 ag < by&ecy, and (bo&cp) + ap = 2ay < 1, hence
e =ap& (/)()&C()) - /f ©dy.

~

Hence,

__B-(-=8
S 2+ (1= p)

To complete the proof, it i1s therclore suflicient to prove that the diflerence
t, — t. cannot execed M. We will prove this by reduction to a contradiction by
assuming that +, — . > M and by getting a contradiction. This contradiction
will be different for Cases 1-1V considered in Section 8.2.

ta—te=fag—f*ap=p(l —p)

8.3.2. Case I
In this case, as we have shown m Scetion 8.2, ¢, = min(/i2 b, f}-a) and
= /12 -a. Thus, from the assumption that ¢, — t. > M, we can conelude that
B-p—p-a>Mand that p-a—f-a>M.
The sccond of these inequalities is equivalent to - (1 — ff) -a > M, i.e., 10
M

a > ’/}—ﬁ:‘ﬂ—)
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By definition of M, we have
M 1

= = dop,

B-O-p 24p-0-p "
so this inequality leads to

1
a>y= ————— 5
"T248-(1-5). ©)
The first inequality 8> -b— > -a = f*- (b —a) > M is equivalent to
M 1 -
b—a>—== B (6)

g B-@tp-l=8))
From (5) and (6), we conclude that
1-8 2
FO+B- (=) 248 )
__+(-=-f 1P
T B R+E-U—B)) B-R+E(=5)
Since in Case 1, a + b < 1, we conclude that
1+
p-2+B-(1-5)

1.e., that

T+B<B-2Q+B-(1=f) =28+ -

If we move f8 to the right-hand side and f* to the left-hand side, we get a
simpler equivalent inequality

1 £f 2 Baepm

This inequality can be further simplificd if we divide its both sides by 1 + f > 0,
resulting in the following:
1-8+ B <8h.
If we move f§ from the right-hand side to the left, we get | —2p+ > =
(1 — f)* < 0, which is impossible.
The contradiction shows that in Case 1, we cannot have 1, — 1. > M.

a+b=(h—a)+2a>

<,

8.3.3. Case I1

In this case, as we have shown, (. = /32 -a. To gct the desired contradiction,
we must deduce the expression for 1, = (h&c)&a. Here, b&ec=b+ (1 — f)-
¢ — (1 = B). From b&c < b, we can conclude that (b&c)+a<hb+a<1, so

t,=f-min(b&c,a) = f-min(b+ (1 — f)-c— (1 = f),a).
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Thus, from the assumption that ¢, — 7. > M, we can conclude that
B+ ==l =) =F" a =M (7
and
foa—p-a>M. (8)
From (8), similarly to Case I, we can conclude that ¢ > ao. Since in Casc 11, we

have a+c<1, we conclude that ¢<l|—a; due to a>ay, we have
] -a < | — ay and therefore,

T )
2+ p8-(1=p)
IFrom b < ¢, we can now deduce that b < by.
From the inequality (7), by dividing its both sides by fi, wc conclude that
M l-p
(AT B} <
On the other hand, since b < by, ¢ < by, and a > ay, we conclude that
b+(I=B)-c—0=p)=p-a<by+(1—p) -bo—(1=p)—f-ao.
Substituting by = 1 — ay into this inequality, we get
b+(l=f)-c=(1=B)=f-a
< b—ag (L —p) - (1 —tig)— (1—B) —fap

Combining together terms which contain ap and terms which do not contain ag,
and substituting the cxpression for ag, we concludce that
b+ (=B c—(1=f)—f-u
<(A+1=p-1+MH+a -(-1=-1+p-§)
2 f-(1=p)
=1 —2a9=1- = : 10
’ ZEP-—8 24001 i

Comparing (9) and (10), we conclude that

c<l—ay=1by

b+(1=f)-c—(L-MH=pF-a>

_ 1= i W S ey b R
2+/3'(1—[3)<b+(1 Boc—(1=-pH-p <2+ﬁ~(1—/)’)’

herice
I-p B -p)
24 (=) 2B (- B)
Multiplying both sides by the common denominator and dividing both sides by
thc common factor | — f§ of both numerators, we conclude that f§ > 1, which
contradicts our assumption that f§ < 1.
The contradiction shows that in Case 1I, we cannot have ¢, — . > M.
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8.3.4. Cuse I .
In this case, as we have shown in Section 8.2, (h&¢) + a < 1, hence

t,={b&c)&a=p -mn(b&c,a)y = -min(b+ (1 = p)-c— (1 =p),a).
For 1., we had two possiblc expressions:

(@) If p-a+c< 1, then (a&b)&e = - a.
BYIff-a+c>1, then (a&b)&c=p-a+ (1 =p)-c=(1-5).

Let us show that in both cases, the assumption 1, — 1. > M leads to a con-
tradiction.

8.3.5. Case 111, Subcase (a)

In this case, from 1, —1t.=1,— [i2 -a>M, we can conclude that
p-a—p* a>M - from which, as we have shown in Case 11, we can deduce
a > ap — and that

B-b+p-(1=p)c—B- (1= - -a>M.

Dividing both sides of this inequality by i, and taking into consideration that
M = p-(1 = B) - ap, we conclude that

b+ (l-8)-e~(1~F)~B-a>(1~p)-a. (1)

Since in Case I11, a + b < 1, we concludc that » < 1 — @, so from ¢ > a,, we can
deduce that b< 1 —a <1 —ay = by.

In Subcase (a), we have f-a+c< 1, hencec<1 — - a. So, from a > ag. we

can deducc that e< 1= f-a< 1= fi-ay = cp. So, a > ay, b < by, and ¢ < ¢.
Hence,

fbtBofl =Byra—f- Q- =F 3
<Bobo+B(L=f)co—f-(1=p) = an.

Substituting into this inequality the expressions by = 1 —agand ¢y = 1 — /i - ay,
and combining terms together with a, and without «p, we get

b+{(I=f-c—(1=pf=p-a
<bi+(1=f)-co—(1=p)—f-au
=(l—a)+(1=p)-M=F-a)=(1-=p~p ao
=(1+1=f=1+MN+a-(-1--0-=-Hf-H
=14ap (-1 =28+ 8. (12)
From (11) and (12), we can concludc that

(t=B-a<b+(l=fre—(1-P-Fa<l+a(-1-2+F)
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hence.
S (e (R
Moving terms containing «qy to the left-hand side, we econclude that

gl L 2 - Pha

ap-2+p-(1-f)) < L. (13)
We know that
t
244 (0= p)

ay =
so (13) leads to | < | — a contradiction,

8.3.0. Case 111, Subcase (b)
In this case, from 1, — 1, =1, — (f-a+ (Il = f)-¢— (1 = f)) > M, and from
the fact that 7, is the minimum of two expressions:

tb=min(ff-b+p-(L=f-c=f-(1=0),5 a),

we can conclude that the following two imequalities hold:

B Bl ) v =B = B L= B = = ()] > 86

(14)
Boa—(f-at(l=Pf-c—(1—p)>M. (15)

The inequality (15) leads to
—(1=f)-c+(l-p)>M.

Dividing both sides of this inequality by 1| —f and taking into con-
sideration that M = f- (I — f) - ay, we conclude that —c+ 1> ff-aq, le.,
that ¢ < | —f-ay. Since ¢y was defined as 1 — f-ay, we conclude that
¢ < Cp.

Subease (b) corresponds to the inequality f-a+e¢>1, so f-a>
l—¢; since c¢<c¢y, we have f-a>1—¢>1~¢y=f a, hence
a > dy.

In Case 111, a+b<1, so b< 1 —a, hence b1 ~a< t —ay = by. So,
a > ag, b < by, and ¢ < ¢y.

The inequality (14) leads to

f-b=f=0 e—fatl=0">M (16)
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If we replace, in (16), ¢ by a smaller value | — [ -a, we get a valid inequality
pb—(=p-(1=p-a)=p-a+(l-p)
=B-b—(1=p>+p-(0=p*-a—p-a+(l1-p
=f-b-F-2-p-a>M,
i.c.,
BB 2= B) a> M

Dividing both sides of the resulting inequatlity by f and taking into consider-
ation that M = f- (1 — f8) - ap, we conclude that

b (=Y oia B AL — i) -y (17)
On the other hand, since b < by = 1 — ay and a > a,, we conclude that
b= (2 = 0" < By~ (20— )iy
=1l—ay— (2~ F)-a
=1+ -28-1)a. (18)
By definition of ap, we have 1 = (1 4 - (1 — f)) - ao, hence
| + (=20 =1 ty= 238 = ) wap+ (B* =28 =0)-ap
= (1= p)-a,
so (18) implies that
b—(28—f)-a< (1 -p)-an.

This inequality contradicts the previously proven inequality (17).

8.3.7. Case IV, Subcase A
Case 1V mcans that

a+b>1, (19)
and thercfore, that

a+c>1 (20)
and

b+c>1. @21

Subcasc A mcans that
a+ (1= -b+c<L2-p. (22)
In Section 8.2, we have shown that in Casc IV, Subcase A.

te=Bea+Be(1=B)-b=p- (=), (23)
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and that 7, is the minimum of two expressions:
tb=min(ff-b+pg-(1—=p)-c~p- (L =f),0 a). (24)
Thus, the inequality ¢, — ¢, > M is cquivalent to the [ollowing two inequalities:
B-b4f-(L—f)-c=f-(1-f)
—Brat+tp-(0=0)-b=p-(1=f)>M,; (25)
fa—f-a+f-A=F-b-F-(1=§)>M. (26)
The incquality (26) leads to
B (1=B) b+ (1 -f) >M.
Dividing both sides of this inequality by f#- (1 — ) and taking mto consider-
ation that M = fi- (1 = ff) -ag, we conclude that —b+1 > ap, 1e., that
b <t —uay=>byand b < by.
Since in Case 1V, a+ b > 1, we conclude that a > 1 — b, and since b < by,
we have a > 1 —b> | — by = ay, 1.c., a > aq.
Subtracting (19) from (22), we conclude that —ff- b + ¢ < 1 — . Moving the
term —fi - b to the right-hand side, we get ¢ <1 — ff+ f#-h. We have already
shown that b < by, hencee< | = i+ f-b <1 = fi+ - by. By definition of by

as | —ay, we get e< 1 —fi+f5-by=1—=f-ay The right-hand side of this
equality is exactly the definition of ¢y, so we conclude that

¢ < cp. (27)
Now, the inequality (25) leads to
—f B (0 — ) e M

Dividing both sides of this incquality by f# and taking into consideration that
M=f-(1=f)ap, we get

—a+f-b+(=f)-c>(—f)-a.

Moving all the terms except lor the term proportional to ¢ to the right-hand
side, we get

(I=B)c>a=p-b+(1—f)-ap. (28)

We know that ¢ > ¢y and that b < by = 1 — aq. Therefore, [rom (28), we can
conclude that

(L=f)e>ay— - (1-ao) +(1 = ) -ao
=(l+f+1=f)a—f=2a—p. (29)

From the definition of a, as
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we conclude that
2 _ i 2 . _ ™. (D _ 2
d— a2 _p 2ZU=B=p_(-p-Q-F)
24 8- (1-p) 2+8-(1=p) 2+4-(1-5)

From the definition of ¢y, we can now conclude that 2a5 — ff = (1 — f§) - cy.
Thus, the inequality (29) is equivalent to (1 —f)-¢> (1 =f) ¢y, le., to
¢ > ¢y, wWhich contradicts (27).

8.3.8. Case 1V, Subcase B

Casc |V means the inequalities (19)-(21) are all true, and Subcase B means
that

at+b+(1=f-c<2-p (29a)
and

a+ (1= -b+ec>2-4. (29D)
In Section 8.2, we have shown that in Case 1V, Subease B,

tt=a+(1=f-b+(1=-c=2-(1=4),
and that 7, is the minimum of two expressions:

tp=min(f-b+p- A= -c=p-(1=),0-a).
Thus, the inequality f, — 7. > M is equivalent to the following two inequali-
ties:

BbtB (=P c=p-(1=p—a-(1=p-b

(=M -c+2-(1=-p)>M, (30
fra—a—(1=p8-b—>1=p-c+2-(1=p)>M. (31)

By combining together terms proportional to «, we can simplify the inequality
(31) into the following equivalent form:

—(L=p)ya=(1=B)-b=(1=p-c+2-(1-p) > M.

Dividing both sides of this inequality by 1 — ff and taking into consideration
that M =f-(1 =) ao, we get —a—b—c+2>f-ay. Moving terms a, b,
and ¢ to the right-hand side and f§ - ap to the left-hand side, we get

a+b+c<2-f a. (32)

Subtraeting (19) from (31), we conclude that ¢ < 1 — fi - ag, 1.e., by definition of
¢y, that ¢ < ¢y.

Subtraeting (29b) from (32), we get i-b < fi— fi- a9 = - (1 — ay). By def-
inition of by as 1 — ag, we thus get b < fi- by, hence b < by.

From a + b > 1, we can now conclude that 2 > 1 — b and since b < by, that
a>1—»bh>1-=bhy, hence (by definition of by = 1 — ), that a > ay.
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From (30). we conclude that
sl (B e sl = B0 o (== (=0} > B¢,

1.¢., that

a<2F=1)-6=0 A o2~ (1= —¥. (33)
On the other hand, Trom (29b), it follows that
a>—(1=p)-b—c+ (2. (34)

The lower bound for a coming from the inequality (34) should be smaller than
the npper bound for @ which comes Irom the inequality (33), i.e., we should
have

8 [ TR P
<@2B=Db=UA=pF e+ @@= -1-p -M.

Moving the terms containing & and ¢ to the right-hand side and all the other
terms to the lelt-hand side, we conclude that

Q=B - BrM<B-b+p-(2-p)c. (35)

Dividing both sides of this inequality by f# and taking into consideration that
M =p-(1=[3) ay, we conclude that

b+@2=P)-c>2=B+ {1 =P -ap. (36)

On the other hand, we have already proven that b > by =1—a, and
c<ey=1—=f-ap, hence

b+(2—-B)-c<b+2-0)
=l-a+2-8 (1 -p- a)
=il 4= B (=l == 2P B g
=@+ (=1 =28+ a,. (37)

The lower bound for b -+ (2 — ff) - ¢ coming from the inequality (36) should be
smaller than the upper bound for this quantity which comes from the in-
equality (37), i.c., we should have

=P+ =f-a<B=PH+(=1=284+)a.

Moving all the terms proportional to a to the left-hand side and aff other
terms to the right-hand side, we conclude that

2+p—=p)-ay< L. (38)

However, by the definition of ay, (24 ff— ) - ao = 1, which contradicts (38).
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8.3.9. Case IV, Subcase C

Case IV means the inequalities (19)-(21) are all true, and Subcase C means
that

a+b+(1=pf-c>2-4 (39)
In Section 8.2, we have shown that in Casc IV, Subcase C,
te=a+(0 =B -b+({0=f-c=2-(1=-4)
and
to =B -min(b&c,a)+ (1-f) - (b&c)+a-1)
=min(b&e,+(1=f)-a—(1=f).a+ (1 =8)- (b&e)—-(1-8))
=min((1 =) -a+b+(1=f-c—2-(1=f,a+(1=p4)-b
(=B = (1= = (1-p).
Thus, the inequality ¢, — £, > M leads to the following two incqualities:
A-pf-a+b+(1-p-c-2-(1-P)—-a
—=B)-b=(1=B-c+2-(1-p) >M, (40)

a+(1=B)-b+(1—fe=(1=BF—(1-f—a
—(l=f-b=-(1=f)-c+2-(1=f)>M. (41)
The inequality (41) is equivalent to
== -c+p-(1-H>M

Dividing both sides of this inequality by /i and taking into considcration that
M =B-(1 = B)-ay, we conclude that —c + 1 > ay, e, that ¢ < | —ap. By
dcfinition of by, this means that ¢ < by.

Since b < ¢, from ¢ > by, we can also concludce that b > by.

From a+b > 1 (inequality (19)). wc conclude that a > 1—b. Since
b < by = 1 — ay, we thus conclude that a > 1 — by =1 — (1 — ay) = ay, t.c., that
a > qp. )

The inequality (40) leads to

—fa+fp-b>M.

Dividing both sides of this inequality by f-(1—f), we concludc that
b—a>(1-=p)-ao,ie., that

a<b—(1-p8)-a,.
Since we have shown that b < by = 1 — ay, we can thercfore concludce that

a<l—ay—(1—-p)-ag,
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i.c.,
a <1l —=2-=p) ao. (42)
On the other hand, from (39), we conclude that
a>-b—(1-p)-c+(2-p).

Since we have proven that b < by =1 —aqy and ¢ < by = 1 — ay, we can con-
clude that

a>-by—(1=p)-by+2-F==-2=0) -+ (2-0)
= (2 -If) g (l =3 /)0) = (2— I}) - dy,

a>2-p) a. (48]
The lower bound for ¢ coming from the inequality (43) should be smaller than
the upper bound for a which comes from the inequality (42), i.c., we should
have

2-f)-an<1-—-(2-f)-ao.
Moving the negative term to the right-hand side, we get

(4 —28) ap < 1.
Multiplying both sides of this inequality by 2+ f — * and taking into con-
sidevation that (by definition of ay) (2 + 3 — /32) ~ag = 1, we conclude that
428 <2+ f— B By moving all the terms to the left-hand side, we get the
equivalent incquality g7 — 33 +2 <0, i.c.,

p-0-(f-2)<0. (44)

Since < 1, wehave f—1 <0aud -2 <0, hence (f—1)-(f-2)>0-a
contradiction.

8.3.10. Conclusion

So, in all cases, the assumption that [(a&b)& ¢ —a&(bd&c)| > M leads to a
contradiction. Thus, the theorem is proven.

9. For midpoint operations, the proof can be simplificd if we use interval
computations
9.[. What are interval computations

For o = 0.5, we can simplify tlus proof by using interval computations (sce,
c.g., [11,16,17,31]). Namely, our goal is to find the maximum of the function
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[a&b)&e—a&(b&c) whena € {0, 1], b € [0, 1], and ¢ € [0, 1]. We know that
the minimum of this function is 0: it is attained, e.g., if « = b = ¢ = 0, Thus,
what we are looking for is the range of the above fnnction of three real vari-
ables.

Interval eomputations 1s a teehnique whieh allows us, given a funetion
¥ = f(x1,....x,) of several rcal variables and a “box” B = x; x --- x x,,, where
x; = [x;,x], to computc cither the range of the given funetion on the given
box:

Yy=/(x1,...,x,) = {f(.\'.,...,x,,)lxl € [ ® L a %€ [ ,,\',’,L]}

or an interval Y whieh 1s guaranteed to eontain the desired range, i.e., for
whieh y C Y (Wc cannot always compute the exacs range because computing
this exact range is intraetable even for quadratic funetions f{x,,....x,): sec,
e.g., [18])

This technique is based on the faet that in the eomputer, the computation of
a funetion fconsists of several elementary steps. For example, a eompiler will
translate the eomputation of the midpoint “and” operation

1 L
fpp) = 3 max(p +px — 1,0) +§ min(p,, )

into the following sequenee of elementary steps (r), . ete. denote thc pre-
liminary computation results):

o first, we eompute r := p; + ps;

e then, we eompute 1y =y — |

e compute ry := min(r,, 0);

e compute ry = (1/2) - r3;

e compule s = min{p,, pr):

e compute 1 = (1/2) - rs;

¢ finally, compute the result as y :=ry + 7.

In this example, we have two nput variables x; = p; and x; = p,. In general,
for each input variable x;, we know the interval x; = [x7,x/] of possible values.
For ecaeh elementary step #(a,b), if we know the intervals a = [a,a"] and
b= [b,b'] of possible values for eacl of the input. then we can compute the
interval #(a. b) of possible values of the results:

o [a,at'j+[pb b =la"+b at +b"]:

o [a,at)—[pb,bt)=[a —b",a" = b

o [a,a]-[b ,b"]=[c,c"], where:
o ¢ =min(a b ,a -btat b at - bY),
o ¢t =max{(a b ,a -bt,at-bat b))

e min(fa .a'], [, b"]) = [min(a ", b ), min(a’, b*)];
o max([a~,a’],[p7,b7]) = [max(a~, b)), max(a*. b")].

These formulas are called formulas of interval aritlinetic.
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So, to find an interval that contains the desired range, we lollow the original
algorithm step-by-step. on cach step replacing the original elementary opera-
tion with real numbers by the corresponding operation of interval arithmetic.

In particular, if we want to know the range of the values of the function
S(prop) = p&py when py € ppand py € p,, we do the following:

e f{irst, we compute ry = p, + py;

¢ then, we compute ry =1, — (1, 1];

¢ compute ry := min(rz, [0, 0]);

e compute ry = [0.5,0.5] - r3:

e compute rs ;= min(p,, p,):

¢ compute rg := {0.5.0.5] - rs;

¢ fmally, compute the result as Y := 1y -+ 1.

It is casy to prove (by induction) that at any given moment ol time, the result of
this procedure s guaranteed to contain the result of the interval of possible
values of the corresponding quantity.

It is also casy to show that this “naive” interval computation procedure
sometimes overestimates. For example, for a function f{x;) =x; - (I —x;) on
the interval {0, 1], the computational procedure consists of the following two
steps:

e /= 1 =E X
® VIi=Xr,

so we get the following estimate:

o ity = [ = o= [0 =08 e [ <=0, 1= 0] = 0 L[
o T s e (05 ] -0 1] =
[min(0-0,0-1,1-0,11),max(0-0,0-1,1-0,1-1)] =10,1],

while the actual range is y = [0,0.25] C Y = [0, 1].

To deercase the overestimation, we can use the following methodology of
interval computations: we divide each interval x; into several sub-intervals,
thus dividing the original box into many sub-boxes; then, we estimate the range
of the function over each of the subintervals, and then take the union of the
resulting ranges as an cstimate for the range over the whole original box.

If we arc interested not only in the actual value of the maximum, but if we also
want to know where exactly this maximum is attained, then we can use this sub-
boxes us follows: il we have two subboxes 8 and B, with range estimates [y, M|
and [my, M,]. and My < mj, then we are guaranteed that an arbitrary value
f(x1,....x,) for (x),....x,) from the first subbox is smaller than every value
from the sccond subbox. Thus, we can salfely claim that the (global) maximum of
the given function cannot be attained in the first subbox — hencee, this first subbox
can be salely removed (rom the list of possible location of the global maximum.

We used this idea to simplily our prool.
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9.2. How we nsed interval computations to simiplify the proof for midpoint
operalion

In our proof, we considered Tour different cascs 1-1V, which depended on the
relation between | and the sums a + b, a 4+ ¢, and b + ¢. In the above proof, for
each of these four cases, we showed that the value of the desired function
cannot cxceed the bound described by the theorem (for o = = 0.5, this upper
bound is M = 1/9).

To cheek whether the corresponding four parts of the proof arc really neces-
sary, we divided each original interval [0, 1] into 100 subintervals of length
0.01: [0,0.01],{0.01,0.02], etc. As a result of this subdivision, we get
100 x 100 x 1000 = 10° sub-boxes. (At first, we started with dividing each in-
terval [0, 1]into 10 sub-intervals, but this did not lead to any simplification of the
proof.) For each of these subboxes, we applied the naive intcrval computations
technique to estimatc thc range [m;,M;] of the desired function
|(a&b)&c —a& (b&c)| on this subbox. Then, we eliminated all subboxcs for
which M; <1/9. (Thus, if a subbox has been discarded, this mcans that for each
combination (a, b, ¢) from this subbox, the valuc of the desired function is < 1/9.)

As a result, out of the original million subboxes, we were left with only 80
possible locations of the global maximum. These subboxes were located in the
following placcs:

e For b, the only possible subintervals turned out to be are [0.54,0.55],
[0.55,0.56], [0.56.0.57], and [0.57,0.58], i.e., wc can conclude that
b € [0.54,0.58].

e For a, the possible subintervals arc:
o either from the interval a € [0.43,0.46], in which case ¢ € [0.75,0.79];
o or from the interval « € [0.75,0.79], in which case ¢ € [0.43,0.46].

If wc sort these values in the increasing order, then we conclude that for the
sorted variables, a € [0.43,0.46], b € [0.54,0.58], and ¢ € [0.75,0.79].

Sinee a € [0.43,0.46] and ¢ € [0.75,0.79], the sum a -+ ¢ is guarantced to be-
long to the interval [0.43,0.46] 4 [0.75,0.79] = [1.18,1.25], i.c., is guaranteed to
be larger than 1. Thus, if for some values a, b, and ¢, we have a + ¢ < 1, then we
alrcady know that for these values, the desired function cannot take a value > 1/9
(since this triple (a, b, ¢) belongs to the discarded subboxes, for which we have
already shown that the value of the function is <1/9).

To check that the desired function eannot take the values > 1/9, 1t is sufli-
ecient only to cheek 80 remaining subboxes. Since for these remaining subboxes,
a+ ¢ > 1, there is no nced to eonsider Cases 1 and 11 for which a +- ¢ < 1. So,
we only have to prove the result for Cases 11 and 1V.

Interval computations not only reduces the number of cases m half, 1t also
simplificd the proof of at least one of the cases — Case 1V. Indeed. in the above
proof, to prove the theorem for Case 1V, we scparately considered three sub-
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cases (A, B, and C) which correspond to the possible relation between 2 - f
(= 1.5 (or midpoint operations) and the expressions a+ (1 —f)-b+c¢
(=a+05-b+4+¢) and a+Db+ (1 - fi)-¢c (=a+b+0.5¢). By using the
above-described guaranteed intervals, we can eliminate the necd to consider
some of these subcases in our proof. Indeed, within the abovc interval bounds
for a, b, and ¢, the upper bound fora +b+4 (1 = ff) ¢ =t + b+ 0.5 ¢isequal
to 0.46 +0.58 +0.5-0.79 = 1 .435 < 1.5. Thus, to check that the valuc of the
desired function cannot exceed 179, we only need to consider cases when
a+b+0.5 ¢ < 1.5 Thus, we can dismiss Subcase C when this inequality is
not satished, and only consider Subcases A and B in our proof.

Thus, for the midpoint operations, the use of mnterval computations indeed
climinates more than half ol the cases and thus, simplifies the proof. (We
expect the samc simplification to occur for other operations as well, when
o #0.5.)

A further simplification emerges from observing that for each subcase, the
problem of maximizing the difference ¢, — 1. is a problem ol optimizing a linear
function under constraints which are linear inequalities; in other words, this
problem is a linear progranuning problem. it is known that for such problems,
the optimum is always attained at one of the vertices. Each vertex can be
obtained as Follows: if we have n variables, then we nced to select i inequalitics,
make them equalities, solve the corresponding system of n hnear equations
with 7 unknowns, and check that the remaining inequalities are still satistied.
This checking can be done automatically. Then, all we have to do is compute
the values of the optimized function at different vertices and make sure that all
thesc values do not exceed our bound M.

10. Conclusions

In this paper, we considered the situations when we know the subjective
probabilities (dcgrees of belief) p; and p; of two statcments Sy and S», and we
have no information about the relationship between these statements. In this
case, the probability of S;&S; can take any value from the interval
max(py + p; — 1,0), min(py, p)]. If we must sclect a single number from this
interval, the natural idea is to take its midpoint

> def 1 .
pr&p = - (max(py + p2 = 1,0) + min(py, p2))
or, more generally, to tuke a linear combination

P &pzq"‘:ra ~max(p +p— 1,0) + (Y — 2) - man(py, o).

These choices are not only natural, they also have deceper justifications basced
on second-order probabilities and symmetry ideas.
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The problem is that, contrary to intuitive cxpectations. the corresponding
“and” operations are not associativc. However, since the largest possible non-
associativity degree |[(a&b)&c —a& (b& )| is equal to 1/9, this non-associ-
ativity is neghgible if the realistic “grannlar” degree of belict have granules of
width = 1/9.

This may explain why humans are most comfortable with <9 items to
choose from (the famous 7 plus or minus 27 law).
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